Изучение вынужденных электромагнитных колебаний в последовательном колебательном контуре

Рекомендовано редакционно-издательским советом университета в качестве методических указаний

Лабораторная работа № 124

Для студентов 1 и 2 курсов энергетических, строительных и механических специальностей

Москва – 2008

Методические указания к лабораторной работе № 124 «ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ В ПОСЛЕДОВАТЕЛЬНОМ КОЛЕБАТЕЛЬНОМ КОНТУРЕ» предназначены для студентов 1 и 2 курсов энергетических, строительных и механических специальностей и соответствуют программе и учебным планам по физике (раздел «Электромагнитные колебания и волны»).

Ил. 3, табл. 2.

© Московский государственный университет путей сообщения (МИИТ), 2008
Цель работы. Изучение с помощью электронного осциллографа вынужденных электромагнитных колебаний в последовательном контуре; наблюдение резонанса напряжений и снятие резонансных кривых; определение двумя способами добротности контура; расчёт внутреннего активного электросопротивления генератора.

Вынужденными называются колебания, возникающие в какой-либо системе под действием периодической внешней (вынуждающей) силы. Характер вынужденных колебаний определяется свойствами колебательной системы и свойствами источника вынуждающей силы.

В работе изучаются линейные вынужденные колебания в последовательном электромагнитном контуре с сосредоточенными параметрами R, L, C (рис. 1). Источником вынуждающей силы является генератор, с бесконечно малым внутренним электросопротивлением, ЭДС генератора изменяется по гармоническому закону $e = e_0 \cos \omega t$.

Для мгновенных значений токов и напряжений в исследуемом контуре можно записать закон Ома в обобщенной форме
\[IR = U - L \frac{dl}{dt} + \varepsilon, \]

(1)

где \(U \) — разность потенциалов на обкладках конденсатора;
\(R \) — полное активное электросопротивление цепи контура;
\(I \) — квазистационарный электрический ток в цепи контура.

Так как на экране осциллографа наблюдается временная зависимость \(U(t) \), решим уравнение (1) относительно \(U \). Выполнив замены

\[I = - \frac{dq}{dt} = -C \frac{dU}{dt}, \quad \frac{dl}{dt} = C \frac{d^2U}{dt^2} \]

и введя обозначения \(\delta = \frac{R}{2L} \) и \(\omega_0^2 = \frac{1}{LC} \), получим линейное дифференциальное уравнение второго порядка с правой частью, описывающего вынужденные колебания разности потенциалов на обкладках конденсатора:

\[\frac{d^2U}{dt^2} + 2\delta \frac{dU}{dt} + \omega_0^2 U = -\varepsilon \cos \Omega t, \]

(2)

Здесь \(\omega_0 \) — круговая (циклическая) частота собственных не затухающих колебаний; \(\delta \) — коэффициент затухания собственных колебаний; \(\Omega \) и \(\varepsilon \) — круговая частота и амплитуда вынуждающей ЭДС.

Общее решение уравнения (2) для случая \(\omega_0^2 > \delta^2 \) имеет вид

\[U(t) = U_m e^{-\delta t} \cos(\omega t + \varphi_0) + \omega_0^2 U + \varepsilon \cos(\Omega t - \alpha), \]

(3)

где \(\omega = \sqrt{\omega_0^2 - \delta^2} \) — круговая частота затухающих собственных колебаний; \(\varphi_0 \) и \(\alpha \) — начальные фазы затухающих и вынужденных колебаний разности потенциалов на конденсаторе. Из уравнения (3) видно, что в начале действия внешней силы характер колебаний изменяется во времени,
но с затуханием собственных колебаний в контуре устанавливаются гармонические колебания вида
\[U(t) = U_0 \cos(\Omega t - \alpha), \] (4)
Амплитуда и начальная фаза установившихся колебаний:
\[U_0 = \frac{\varepsilon_0 \omega_0^2}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4\delta^2 \Omega^2}}, \] (5)
\[\alpha = \arctg \frac{2\delta \Omega}{\omega_0^2 - \Omega^2}, \] (6)
определяются амплитудой вынуждающей ЭДС \(\varepsilon_0 \) и частотой \(\Omega \), а также параметрами контура \(R, L, C \).
По мере приближения частоты колебаний вынуждающей силы \(\Omega \) к частоте собственных электромагнитных колебаний \(\omega_0 \) в последовательном контуре наступает так называемый резонанс напряжений, т. е. резкое возрастание амплитуд напряжений вынужденных колебаний на реактивных элементах контура \(L \) и \(C \). При этом в колебательный контур от внешнего источника поступает наибольшая мощность.
Исследуя (5) на экстремум получим, что разность потенциалов на конденсаторе достигает максимального, т. е. резонансного значения:
\[U_{0_{рез}} = \frac{\varepsilon_0 \omega_0^2}{2\delta \sqrt{(\omega_0^2 - \Omega^2)^2 + 4\delta^2 \Omega^2}} = \frac{\varepsilon_0}{RC \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}} \] (7)
при частоте вынуждающей ЭДС
\[\Omega_{рез} = \sqrt{\omega_0^2 - 2\delta^2} = \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}, \] (8)
называемой круговой резонансной частотой.
Графическая зависимость амплитуды U_0 от частоты вынуждающей ЭДС называется резонансной кривой или резонансной характеристикой контура. На рис. 2 представлены резонансные кривые для различных значений коэффициента затухания δ. Очевидно, что резонансные значения амплитуды и частоты убывают с ростом δ ($\delta_1 < \delta_2 < \delta_3$, см. рис. 2). Следует отметить, что максимальная величина тока в последовательном контуре достигается при частоте $\Omega = \omega_0$ для любых значений δ.

![Diagram](attachment:diagram.png)

Рис. 2.
Резонансные свойства линейных колебательных систем, в частности электромагнитных контуров, характеризуется добротностью. Добротность \(Q \) это есть умноженное на \(2\pi \) отношение имеющейся в контуре электромагнитной энергии к средней энергии потерь за один период колебаний.

Пренебрегая электромагнитным излучением контура и считая, что вся электромагнитная энергия сосредоточена в магнитном поле тока катушки и электрическом поле конденсатора, а потери связаны с протеканием тока по электросопротивлений \(R \) (диссипативные потери), можем величину добротности контура рассчитать по формуле:

\[
Q = \sqrt{\frac{L}{C}} R ;
\]

где \(R = r + R_L + R_{\text{внеш}} \) — полное активное электросопротивление цепи контура; \(r \) — внутреннее активное электросопротивление генератора (\(r \ll R \)); \(R_L \) — активное сопротивление катушки и соединительных проводов; \(R_{\text{внеш}} \) — активное внешнее электросопротивлений, включенное в контур.

Так как в момент резонанса амплитуда колебаний в \(Q \) раз превышает амплитуду внешней ЭДС, то при малых значениях \(\delta \) соотношение (7) принимает вид

\[
U_{0,\text{прз}} = \frac{\varepsilon_0 \omega_0}{2\delta} = \varepsilon_0 Q ,
\]

и для добротности получим выражение

\[
Q_1 = \frac{U_{0,\text{прз}}}{\varepsilon_0} ;
\]

Добротность контура можно также рассчитать по ширине резонансной кривой. Ширина резонансной кривой (или полоса пропускания контура) есть интервал частот \(\Delta f = f_2 - f_1 \)
на границах которого энергия, запасенная в контуре при резонансе, убывает в два раза, т. е. амплитуда колебаний U_0 отличается от амплитуды при резонансе в $\sqrt{2}$ раз (см. рис.2).

Для заданной величины δ добротность численно равна отношению резонансной частоты к ширине резонансной кривой:

$$Q_2 = \frac{\Omega_{рез}}{\Omega_2 - \Omega_1} = \frac{f_{рез}}{f_2 - f_1};$$

(11)

т. е. ширина резонансной кривой тем уже, чем больше добротность контура.

ОПИСАНИЕ УСТАНОВКИ

Схема лабораторной установки для исследования вынужденных электромагнитных колебаний изображена на рис. 3.

Рис.3. Схема лабораторной установки.

Колебательный контур состоит из последовательно соединенных конденсатора ёмкостью $C_к$, катушки индуктивности $L_к$ и магазина сопротивлений R, который может по-
очередно включаться в контур. Значения ёмкости C_κ, индуктивности L_κ и электросопротивлений R_L, указаны на панели установки.

Для возбуждения вынужденных колебаний используется генератор синусоидальных колебаний с несколькими диапазонами частот в пределах $f_r = 1 \div 20$ кГц. Частота выходного сигнала генератора изменяется грубо путем переключения диапазонов частот и плавно в пределах выбранного диапазона ручкой плавной подстройки частоты. Отсчёт частоты производится по шкале частот выбранного диапазона. Резонансная частота соответствует наибольшей амплитуде электромагнитных колебаний при заданном значении R.

Исследуемая разность потенциалов с клемм конденсатора C_κ подается на ВХОД-У осциллоグラФА. Устойчивое изображение колебаний $U(t)$ можно получить на экране осциллоグラФА при правильном подборе частоты синхронизации, горизонтальной развертки, а также величины вертикального усиления. Измерение амплитуды исследуемых колебаний производится электронным цифровым вольтметром.

Приборы и принадлежности: кассета с колебательным контуром, генератор синусоидальных колебаний, электронный осциллоГраф, электронный цифровой вольтметр, магазин сопротивлений, соединительные провода.

Порядок выполнения работы:

1. Перед началом работы занесите в табл. 1 значения ёмкости C_κ, индуктивности L_κ и электросопротивления R_L, которые указаны на кассете с контуром. Значения внешних электросопротивлений R_1, R_2, R_3 задаются преподавателем и их величины устанавливаются с помощью магазина сопротивлений. Для заданных значений L_κ и C_κ рассчитайте
линейную частоту собственных электромагнитных колебаний в контуре по формуле:

\[f_0 = \frac{1}{2\pi \sqrt{LC}}. \]

2. Соберите схему установки в соответствии с рис. 3. После проверки схемы лаборантом включите в сеть генератор и осциллограф, дайте им прогреться, отрегулируйте яркость и фокусировку луча осциллографа.

3. Установите переключатели магазина сопротивлений в положение, соответствующее внешнему электросопротивлению R1, переключатель диапазонов частот генератора — в положение, соответствующее рассчитанному значению частоты \(f_0 \). Наблюдайте вынужденные синусоидальные колебания на экране осциллографа.

4. Изменяя частоту колебаний выходного сигнала генератора в пределах выбранного диапазона с интервалом 0,2 кГц, снимите резонансную кривую при внешнем электросопротивлении R1. Особенно тщательно проделайте измерения вблизи резонанса. Определите экспериментально резонансные значения частоты \(f_{рез} \) и амплитуды колебаний \(U_{0,рез} \). Все данные занесите в таблицу 1.

5. Проделайте опыты по п. 4 для внешних электросопротивлений R2 и R3.

6. Не изменяя настройки генератора измерьте амплитуду колебаний ЭДС генератора \(\varepsilon_0 \). Для этого выходной сигнал генератора подайте непосредственно на ВХОД-Y осциллографа. Полученное значение занесите в табл. 1.

Оформление результатов измерений

1. По данным табл. 1 постройте резонансные кривые для электросопротивлений R1, R2, R3. Нанесите на график экспериментальные значения \(f_{рез} \) и расчётное значение \(f_0 \).
2. На каждой резонансной кривой отметьте уровень, соответствующий \(U_{0_{\text{res}}} / \sqrt{2} = 0,7 U_{0_{\text{res}}} \), определите по графику значения частот \(f_1 \) и \(f_2 \), а также ширину резонансной кривой \(\Delta f \). Данные занесите в таблицу 2.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>(f), кГц</th>
<th>U₀, В</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>R₁ = ..., Ом</td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[C_K = ... \text{ нФ}; \quad f_0 = ... \text{кГц}; \]
\[L_K = ... \text{ мкГн}; \quad R_L = ... \text{ Ом}; \]

3. Для внешних электросопротивлений R₁, R₂, R₃ рассчитайте величины добротностей контура Q₁ и Q₂ по формулам (10) и (11). Для каждого значения электросопротивления вычислите среднюю величину добротности:

\[Q_{ср} = (Q_1 + Q_2) / 2. \]

Данные занесите в табл. 2.

4. Для среднего значения добротности в соответствии с формулой (9) рассчитайте полное электросопротивление цепи контура:

\[R = \frac{\sqrt{L}}{Q_{ср}}. \]

5. Рассчитайте величину внутреннего активного электросопротивления генератора:

\[r = R - (R_\text{внеш} + R_L). \]

6. Вычислите относительные погрешности косвенного определения добротностей

\[\delta Q_1 = \frac{\Delta Q_1}{Q_1} = \frac{\Delta f_{\text{res}}}{f_{\text{res}}} + \frac{\Delta f_1}{f_1} + \frac{\Delta f_2}{f_2}; \]
\[\delta Q_2 = \frac{\Delta Q_2}{Q_2} = \frac{\Delta U_0}{U_0} + \frac{\Delta \varepsilon_0}{\varepsilon_0} \]

\[Q_1 = \frac{f_{\text{рез}}}{\Delta f} \]

\[r = R - (R_{\text{вн}} + R_L) \]

<table>
<thead>
<tr>
<th>(R = \sqrt{\frac{L}{C}})</th>
<th>(Q_{\text{рез}} = \frac{Q_1 + Q_2}{2})</th>
<th>(Q_1 = \frac{f_{\text{рез}}}{\Delta f})</th>
<th>(Q_1 = \frac{\Delta U_0}{\varepsilon_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_0)</td>
<td>(\text{В})</td>
<td>(\Delta f)</td>
<td>(\text{кГц})</td>
</tr>
<tr>
<td>(f_1)</td>
<td>(\text{кГц})</td>
<td>(f_{\text{рез}})</td>
<td>(\text{кГц})</td>
</tr>
<tr>
<td>(0.7U_{\text{рез}})</td>
<td>(\text{В})</td>
<td>(U_{\text{рез}})</td>
<td>(\text{В})</td>
</tr>
<tr>
<td>(R_{\text{неш}})</td>
<td>(\text{Ом})</td>
<td>(R_1 = \ldots)</td>
<td>(R_2 = \ldots)</td>
</tr>
</tbody>
</table>
КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В каких системах возможны колебания? Дайте определение собственных и вынужденных колебаний.
2. Какие колебания изучаются в данной работе? Изобразите исследуемый колебательный контур; объясните, каким способом возбуждаются колебания.
3. Напишите дифференциальное уравнение, описывающее вынужденные колебания разности потенциалов на конденсаторе в последовательном электромагнитном контуре. Получите решение этого уравнения, объясните его физический смысл.
4. Какими физическими параметрами контура определяются частота, фаза и амплитуда установившихся вынужденных электромагнитных колебаний?
5. Дайте определение резонанса напряжений. Как рассчитать амплитуду и частоту резонанса для исследуемого контура?
6. Как изменится резонансная кривая идеального электромагнитного контура (/? = 0), если в контур включить активное электросопротивление? Увеличить это сопротивление?
7. Дайте определение добротности электромагнитного контура. Укажите способы определения добротности. Как увеличить добротность исследуемого контура?
8. Что называется шириной резонансной кривой. Какими параметрами контура она определяется?
9. Опишите проделанный Вами опыт. Каким способом получены экспериментальные резонансные кривые? Как определяются в опыте амплитуда вынуждающей ЭДС и значение резонансной частоты контура?
10. Можно ли в данной работе изменить резонансную частоту контура? Какие величины, характеризующие вынужденные колебания, изменяются, если увеличить активное сопротивление контура?

СПИСОК ЛИТЕРАТУРЫ
1. Савельев И. В. Курс общей физики. — М., 1982. — Т. II, гл. XVII.
2. З и с м а н Г. А., Тодес О. М. Курс общей физики. — М., 1980. — Т. II, гл. XI.
ЛЯПУШКИН Николай Николаевич
ВАСИЛЬЕВ Евгений Васильевич

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ В ПОСЛЕДОВАТЕЛЬНОМ КОНТУРЕ

Методические указания
к лабораторной работе по физике № 124

Подписано в печать 11.06.2008
Усл.-печ. л. – 1,0.

Формат 60х84/16.
Тираж 300 экз.
Заказ № 262.

127994, Москва, ул. Образцова, 15
Типография МИИТа