ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Кафедра «Радиотехника и электросвязь»

Н.А. Казанский, Е.С. Волкова, В.В. Барташевич

РАСЧЁТ ХАРАКТЕРИСТИК КАЧЕСТВА ПЕРЕДАЧИ В ЦИФРОВЫХ СЕТЯХ СВЯЗИ

Рекомендовано редакционно-издательским советом университета в качестве методических указаний для студентов, обучающихся по направлению по специальности «Системы обеспечения движения поездов», специализации «Телекоммуникационные системы и сети на железнодорожном транспорте»

Москва — 2012

Методические указания содержат теоретические и практические сведения, позволяющие оценить качество каналов цифровых систем передачи путём расчёта и анализа глаз-диаграммы цифровых сигналов

© МИИТ, 2012
ЦЕЛЬ РАСЧЁТА

Приобретение практических навыков оценки качества передачи по каналам цифровых систем передачи путем расчета и последующего анализа глаз-диаграммы цифровых сигналов на выходе фотоприёмного устройства оптической системы передачи.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основным показателем качества передачи по каналам цифровых систем передачи является коэффициент битовых ошибок BER.

Предварительно вычисляется уровень мощности оптического сигнала на выходе источника оптического излучения:

\[p_0 = 10 \log \left(\frac{P_0}{10^{-3}} \right) \text{ дБ}, \]

где \(P_0 \) – заданная мощность оптического сигнала на выходе источника излучения, Вт (см. Приложение 1).

Уровень мощности оптического сигнала на выходе фотоприемника оптических систем передачи (ОСП) \(p_L \) определяется суммарными потерями мощности в оптическом волнке (ОВ) на элементарном кабельном участке (ЭКУ) волоконно-оптической линии связи (ВОЛС). Суммарное значение дополнительных потерь мощности, обусловленных дисперсией в ОВ, учитывается в следующем выражении:

\[p_L = p_0 - A_{эк} - \alpha_{lsl}, \text{ дБ}, \]

где \(A_{эк} \) – суммарные потери мощности сигнала в ОВ на ЭКУ;
\(a_{ISL}\) — потери мощности сигнала из-за шумов межсимвольной интерференции (ISI — Intersymbol Interference).

Определим суммарные потери мощности сигнала в ОВ на ЭКУ \(A_{ЭКУ}\):

\[A_{ЭКУ} = \alpha L_{ЭКУ} + \alpha_N N_n + \alpha_p N_p, \text{ дБ,}
\]

где \(\alpha\) — коэффициент линейного затухания оптического сигнала в ОВ на заданной рабочей длине волны (\(\lambda\)), дБ/км;

\(L_{ЭКУ}\) — протяженность ЭКУ, км;

\(\alpha_n\) — максимальное значение потерь мощности сигнала в неразъемном соединении на заданной рабочей длине волны (\(\lambda\)), дБ;

\(\alpha_p\) — потери мощности сигнала в разъемных соединениях, предполагая использование оптических разъемов типа FC/PC (\(\alpha_p = 0,5\) дБ);

\(N_p\) — количество разъемных соединений на ЭКУ (принимаем \(N_p = 4\) (по 2 разъемных соединения на приеме и передаче, в том числе по одному на оптическом кроссе и на приемопередающем модуле оптической системы передачи)),

\(N_n\) — количество неразъемных соединений, определяется по формуле:

\[N_n = \frac{L_{ЭКУ}}{L_{СД}} - 1, \quad (1.4)\]

где \(L_{СД}\) — строительная длина оптического кабеля, обычно составляет 2-6 км.
Потери мощности сигнала из-за шумов межсимвольной интерференции определяются выражением:

\[a_{\text{IN}} = 10 \log \left(\frac{1}{1 - 1.425 \exp \left(-1.28 \left(\frac{T_0}{T_L} \right) \right)} \right) \text{, дБ}, \]

где \(T_L \) — время нарастания фронта импульса оптического сигнала на выходе фотоприемника, с, (вычисляется по (1.8));

\(T_0 \) — время нарастания фронта импульса оптического сигнала на входе источника оптического излучения определяется следующим соотношением:

\[T_0 = \frac{0.48}{B_L} 10^{-6} \text{, c,} \quad (1.6) \]

где \(B_L \) — скорость передачи цифрового потока в линии с учётом линейного кодирования, Мбит/с.

В расчётах используется блочный линейный код вида MBNB:

\[B_L = \frac{N}{M} B \text{, Мбит/с,} \quad (1.7) \]

где \(M \) — число символов кодовой последовательности в бинарном цифровом потоке;

\(N \) — число символов кодовой последовательности в линейном цифровом потоке;

\(B \) — скорость передачи данных, соответствующая заданному уровню иерархии скоростей цифровых потоков, Мбит/с, (см. Приложение 1).
Например, для потоков E1 (B = 2,048 Мбит/с) или E2 (B = 8,448 Мбит/с) используется блочный линейный код 1B2B. Потоку Е3 (B = 34,368 Мбит/с) соответствует код 5B6B. Для уровней синхронной цифровой иерархии STM-1 и выше принимаем блочный линейный код 10B11B.

Время нарастания фронта импульса оптического сигнала на выходе фотоприемника рассчитывается по формуле:

\[T_L = \sqrt{T_0^2 + \left(\frac{0,35}{BW_R}\right)^2 + \sigma_{\text{экв}}^2} \cdot \text{с}, \quad (1.8) \]

где \(BW_R \) — полоса пропускания фотоприемника, Гц (выбирается из условия \(BW_R \geq B_L \));

\(\sigma_{\text{экв}} \) — прогнозируемое среднеквадратическое отклонение дисперсии оптического сигнала на ЭКУ:

\[\sigma_{\text{экв}} = \sqrt{D_{ch}^2 + D_{pDM}^2} \cdot \text{с}, \quad (1.9) \]

где \(D_{ch} \) и \(D_{pDM} \) — значения хроматической и поляризационной модовой дисперсии оптического сигнала на ЭКУ.

Прогнозируемое значение хроматической дисперсии оптического сигнала \(D_{ch} \) на ЭКУ определяется по следующей формуле:

\[D_{ch} = D\Delta \lambda L_{\text{экв}}, \quad \text{с}, \quad (1.10) \]

где \(\Delta \lambda \) — ширина спектра излучения источника оптического сигнала, нм, (см. Приложение 1));

\(D \) — коэффициент хроматической дисперсии оптического сигнала на заданной рабочей длине волны \(\lambda \):

\[D = \frac{S_0}{4} \left[\lambda - \frac{\lambda_0^4}{\lambda^3} \right], \text{ пс/(нм·км)}, \quad (1.11) \]
где S_0 — параметр наклона спектральной характеристики дисперсии оптического сигнала в точке нулевой дисперсии ОВ, $\frac{nc}{\text{нм}^2 \cdot \text{км}}$.

λ_0 — длина волны нулевой дисперсии, нм.

Прогнозируемое значение поляризационной модовой дисперсии D_{PDM} оптического сигнала на заданном участке ЭКУ:

$$D_{PDM} = PDM \cdot \sqrt{L_{EKU}}, \text{ с},$$

где PDM — параметр ПМД оптического сигнала в ОВ, $\frac{nc}{\sqrt{\text{км}}}$.

Параметры S_0, λ_0 и PDM берутся из Приложения 1.

Мощность оптического сигнала на выходе фотоприемника P_L рассчитывается по формуле:

$$P_L = 10^{0.1p_L}, \text{ мВт},$$

где p_L — уровень мощности оптического сигнала на выходе фотоприемника, дБ (определяется по (1.2)).

Для расчета помехозащищенности цифрового канала необходимо вычислить уровень мощности оптического шума, создаваемого фотоприемником P_{noise}. Фотоприемные устройства высокоскоростных ВОСП проектируются таким образом, чтобы логарифм отношения полосы пропускания электрического фильтра к полосе пропускания оптического фильтра составлял не менее 2 дБ. С учетом вышесказанного, максимальный уровень мощности шума фотоприемника (P_{noise}, дБ) можно рассчитать по следующей формуле:
\[P_{\text{noise}} = P_R - 20 \lg(Q_{\text{ном}}) - 2, \]

где \(P_R \) — заданный уровень чувствительности фотоприемника, дБ, (см. Приложение 1);
\(Q_{\text{ном}} \) — номинальное значение Q-фактора, соответствующее нормированному коэффициенту ошибок \(BER_{\text{ном}} \) в цифровом канале связи (табл. 1.1).

Таблица 1.1

<table>
<thead>
<tr>
<th>Показатели качества цифровых каналов</th>
<th>Значения показателей качества цифровых каналов систем передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BER_{\text{ном}})</td>
<td>10(^{-9}) \quad 10(^{-10}) \quad 10(^{-11}) \quad 10(^{-12})</td>
</tr>
<tr>
<td>(Q_{\text{ном}})</td>
<td>5,99 \quad 6,63 \quad 6,71 \quad 7,04</td>
</tr>
</tbody>
</table>

Чувствительность фотоприемника \(P_R \) и мощность оптического шума \(P_{\text{noise}} \) рассчитываются следующим образом:

\[P_R = 10^{0,1 P_R}, \text{ мВт}; \quad P_{\text{noise}} = 10^{0,1 P_{\text{noise}}}, \text{ мВт}. \]

(1.15)

Определим зависимость между Q-фактором сигнала и коэффициентом битовых ошибок \(BER \). Величина Q-фактора определяется по глаз-диаграмме оптического
сигнала. Изображение глаз-диаграммы формируется в результате композиции битовых последовательностей цифрового потока и отображается в виде зависимости изменения амплитуды импульсных сигналов по времени.

В идеальном случае цифровой сигнал состоит из импульсов прямоугольной формы (рис. 1.1). Однако, из-за стохастической структуры цифровых потоков, характеристик оптических приемников и передатчиков, характеристик оптического волокна реальная глаз-диаграмма представляет собой последовательность импульсов с пологими фронтами (рис. 1.2).

Если мощность оптического шума соизмерима с мощностью полезного сигнала (рис. 1.3), глаз-диаграмма плохо раскрыта («глаз прикрыт»). Если мощность оптического сигнала значительно превышает мощность шума (рис. 1.2), глаз-диаграмма называется раскрытой («глаз открыт»).

Рис. 1.1. Изображение идеальной глаз-диаграммы
Рис. 1.2. Изображение реальной глаз-диаграммы

Построение глаз-диаграммы осуществляется композицией оптических сигналов в предположении гауссовой формы импульса логического нуля в последовательности логических единиц (например, в комбинации 101 при трёхсимвольной последовательности):

\[P_{out}^{0\prime} (t) = P_L \left\{ 1 - \frac{1}{2} \text{erf} \left[\frac{(t+T)}{s_L \sqrt{2}} \right] + \frac{1}{2} \text{erf} \left(\frac{t}{s_L \sqrt{2}} \right) \right\}, \quad (1.16) \]

и логической единицы в последовательности логических нулей (например, в комбинации 010 при трёхсимвольной последовательности):

\[P_{out}^{1\prime} (t) = P_L \left\{ \frac{1}{2} \text{erf} \left[\frac{(t+T)}{s_L \sqrt{2}} \right] - \frac{1}{2} \text{erf} \left(\frac{t}{s_L \sqrt{2}} \right) \right\}, \quad (1.17) \]

где \(s_L \) - среднеквадратическая длительность импульса гауссовой формы на выходе фотоприемника ВОСП, с. Величина \(s_L \) непосредственно связана с интервалом
передачи битовой последовательности T следующим соотношением:

$$ s_L = \frac{T}{2,563}, \text{с} ; \quad (1.18) $$

$$ T = N_{sym} \tau_{05}, $$

где N_{sym} — количество символов битовой последовательности (в расчётах принимаем $N_{sym} = 3$);

τ_{05} — длительность импульса на уровне 0,5 пиковой мощности на выходе источника оптического излучения, с:

$$ \tau_{05} = \frac{1}{B_L} \times 10^{-6}, \quad (1.20) $$

где B_L — скорость передачи оптического сигнала в линии, Мбит/с.

Глаз-диаграмма строится в диапазоне от $-2T$ до $2T$. Пример построенной глаз-диаграммы представлен на рис. 1.4.

Границы раскрыва глаз-диаграммы (зоны принятия решения фотоприёмником), соответствуют минимальной рассчитанной мощности оптического сигнала при приёме логической 1 (P_1^{min}, мВт) и максимальной рассчитанной мощности при приёме логического 0 (P_0^{max}, мВт):

$$ P_1^{\text{min}} = P_{out}^{1v}(\tau_{open}); $$

$$ P_0^{\text{max}} = P_{out}^{0v}(\tau_{open}), \quad (1.21) $$

где τ_{open} — точка максимального раскрыва глаз-диаграммы, с.
\[\tau_{\text{open}} = \ln \left(\frac{1}{\sqrt{\exp \left(\frac{I^2}{S^2_c} \right)}} \right) \frac{S^2_c}{I}. \]

(1.22)

Рис. 1.4. Пример изображения рассчитанной глаз-диаграммы

Исходя из предположения гауссова распределения мощности сигналов в состоянии логической 1 \((P_{1}^{\text{min}}) \) и логического 0 \((P_{0}^{\text{max}}) \), определяют характеристики распределений этих состояний - математическое ожидание \(E1, \text{мВт} \) и \(E0, \text{мВт} \) соответственно.

Мощности оптических сигналов при приёме логической 1 \(E1 \) и логического нуля \(E0 \) определяются по формулам:
\[E1 = \begin{cases} P_L, \text{ если } P_L \geq P_R, \text{ мВт;} \\ P_R, \text{ если } P_L < P_R, \text{ мВт;} \end{cases} \]

\[E0 = P_{\text{noise}} \text{ Б, мВт}. \]

(1.23)

Среднеквадратичное отклонение мощностей оптических сигналов при приёме логической 1 \(\sigma_1 \) и логического 0 \(\sigma_0 \) выбирают по формулам:

\[\sigma_1 = \frac{P_L - P_1^{\text{min}}}{3}, \text{ мВт;} \]

\[\sigma_0 = \begin{cases} \frac{P_0 + P_0^{\text{max}}}{3}, \text{ } P_0 \leq P_0^{\text{max}}, \text{ мВт;} \\ \frac{P_0 - P_0^{\text{max}}}{3}, \text{ } P_0 > P_0^{\text{max}}, \text{ мВт.} \end{cases} \]

(1.24)

Величина Q-фактора определяется выражением:

\[Q = \frac{|E1 - E0|}{\sigma_1 + \sigma_0}. \]

(1.25)

Для расчёта коэффициента битовых ошибок \(BER \) используется функция ошибок:

\[BER = \frac{1}{2} \text{erfc} \left(\frac{Q}{\sqrt{2}} \right) \approx \frac{1}{Q \sqrt{2\pi}} \exp \left(-\frac{Q^2}{2} \right), \]

(1.26)

где \(\text{erfc} \left(\frac{Q}{\sqrt{2}} \right) \) – вспомогательная функция ошибок.

При выполнении расчётов необходимо соблюдать размерности используемых в формулах величин.
Используя Приложение 1 составим табл. 2.1.

Таблица 2.1
Исходные данные для примера расчёта

<table>
<thead>
<tr>
<th>Название параметра</th>
<th>Размерность</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ширина спектра сигнала источника излучения, $\Delta \lambda$</td>
<td>нм</td>
<td>2</td>
</tr>
<tr>
<td>Мощность излучения оптического сигнала лазера, P_0</td>
<td>мВт</td>
<td>1,5</td>
</tr>
<tr>
<td>Уровень чувствительности фотоприёмника, p_R</td>
<td>дБ</td>
<td>-14.9</td>
</tr>
<tr>
<td>Длина волны нулевой дисперсии, λ_0</td>
<td>нм</td>
<td>1310</td>
</tr>
<tr>
<td>Параметр наклона спектральной характеристики дисперсии оптического сигнала в ОВ, S_0</td>
<td>$\frac{nc}{nm^2 \cdot km}$</td>
<td>0,092</td>
</tr>
<tr>
<td>ПМД, PDM</td>
<td>$\frac{nc}{\sqrt{km}}$</td>
<td>0,1</td>
</tr>
<tr>
<td>Количество символов битовой последовательности, N_{sym}</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Скорость передачи цифрового потока, B</td>
<td>Мбит/с</td>
<td>622,08</td>
</tr>
<tr>
<td>Тип линейного кода</td>
<td>-</td>
<td>10В11В</td>
</tr>
</tbody>
</table>
Предварительно по (1.1) вычисляется уровень мощности оптического сигнала на выходе источника оптического излучения:

\[p_0 = 10 \cdot \log \left(\frac{1.5 \cdot 10^{-3}}{10^{-3}} \right) = 1,761 \text{ дБ}. \]

Для расчета уровня мощности оптического сигнала на входе фотоприемника \(p_L \) в соответствии с (1.2) определяем по (1.3) \(A_{\text{ок}} \) и в соответствии с (1.5) \(a_{\text{IS}} \).

Отсюда:

\[p_L = 1,761 - 14,2 - 0,372 = -12,811 \text{ дБ}. \]

Мощность оптического сигнала на выходе фотоприемника ОСП определяем по (1.13):

\[P_L = 10^{0,1(-12,811)} = 0,052 \text{ мВт}. \]

Максимальный уровень мощности шума фотоприемника \(p_{\text{noise}} \) в соответствии с (1.14) для значений \(Q_{\text{ном}} = 6,63 \) и \(p_R = -14,9 \) дБ будет составлять:

\[p_{\text{noise}} = -14,9 - 20 \log (6,63) - 2 = -2,933 \text{ дБ}. \]

Чувствительность фотоприемника \(P_R \) и мощность шума \(p_{\text{noise}} \) в соответствии с (1.15) составят:

\[P_R = 10^{0,1(-14,9)} = 0,032 \text{ мВт}; \]

\[P_{\text{noise}} = 10^{0,1(-2,933)} = 1,167 \cdot 10^{-3} \text{ мВт}. \]

Интервал передачи битовой последовательности \(T \) определяется в соответствии с (1.19). Среднеквадратическая длительность гауссова импульса на выходе фотоприемника ВОСП \(s_{\text{v}} = 1,711 \cdot 10^{-9} \text{ с} \) определяется в соответствии с (1.18) для интервала передачи битовой последовательности \(T = 4,385 \cdot 10^{-9} \text{ с} \).
при заданной скорости передачи оптического сигнала в линии B_L.

Границы раскрытия глаз-диаграммы $P_{1\text{min}}$ и $P_{0\text{max}}$ рассчитываются в соответствии с (1.16) и (1.17) для точки максимального раскрытия глаз-диаграммы τ_{open}, которая определяется в соответствии с (1.22) и равна $\tau_{\text{open}} = -2,192 \cdot 10^{-9}$ с. Отсюда:

$$P_{1\text{min}} = 0,052 \left[\frac{1}{2} \text{erf}\left(\frac{-2,192 \cdot 10^{-9} + 4,385 \cdot 10^{-9}}{1,711 \cdot 10^{-9} \sqrt{2}}\right)\right] - \frac{1}{2} \text{erf}\left(\frac{-2,192 \cdot 10^{-9}}{1,711 \cdot 10^{-9} \sqrt{2}}\right) = 0,042 \text{ мВт};$$

$$P_{0\text{max}} = 0,052 \left[1 - \frac{1}{2} \text{erf}\left(\frac{-2,192 \cdot 10^{-9} + 4,385 \cdot 10^{-9}}{1,711 \cdot 10^{-9} \sqrt{2}}\right)\right] + \frac{1}{2} \text{erf}\left(\frac{-2,192 \cdot 10^{-9}}{1,711 \cdot 10^{-9} \sqrt{2}}\right) = 0,01 \text{ мВт}.$$

Результаты расчёта представлены на рис. 2.1.

Исходя из предположения гауссова распределения мощности сигналов для логической 1 и логического 0 в соответствии с (1.23) определяем средние числовые значения мощности оптического сигнала:

$$E1 = 0,052 \text{ мВт;}$$

$$E0 = 1,167 \cdot 10^{-3} \text{ мВт.}$$

Среднеквадратические отклонения мощностей σ_1 и σ_0 определяются по (1.24) и составят:

$$\sigma_1 = \frac{0,052 - 0,042}{3} = 3,373 \cdot 10^{-3} \text{ мВт;}$$

$$\sigma_0 = \frac{1,167 \cdot 10^{-3} + 0,01}{3} = 3,879 \cdot 10^{-3} \text{ мВт.}$$
Рис. 2.1. Графики зависимостей откликов системы передачи с указанием границ раскрыва глаз диаграммы

Величина Q-фактора рассчитывается по (1.25): \[Q = \frac{|0,052 - 1,167 \cdot 10^{-3}|}{3,373 \cdot 10^{-3} + 3,879 \cdot 10^{-3}} = 7,009. \]

Поскольку, в соответствии с (1.27) \[\frac{Q}{\sqrt{2}} = \frac{7,009}{\sqrt{2}} = 4,956, \]
то коэффициент битовых ошибок BER рассчитывается по (1.26): \[BER = \frac{1}{7,009\sqrt{2}\pi} \exp \left(-\frac{7,009^2}{2} \right) = 1,225 \cdot 10^{-12}. \]
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>B, Мбит/с</th>
<th>№ п/п</th>
<th>α, мм</th>
<th>№ п/п</th>
<th>S, мм</th>
<th>№ п/п</th>
<th>Δ2, мкм</th>
<th>№ п/п</th>
<th>S2, мкм</th>
<th>№ п/п</th>
<th>P, Мбит/с</th>
<th>№ п/п</th>
<th>S2, мкм</th>
<th>№ п/п</th>
<th>P, Мбит/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STM-1</td>
<td>1</td>
<td>1310</td>
<td>1</td>
<td>0,4</td>
<td>1</td>
<td>1300(±2)</td>
<td>1</td>
<td>0,08</td>
<td>1</td>
<td>1,1*10⁻³</td>
<td>1</td>
<td>-14,2</td>
<td>1</td>
<td>0,02</td>
</tr>
<tr>
<td>2</td>
<td>STM-4</td>
<td>2</td>
<td>1550</td>
<td>2</td>
<td>0,8</td>
<td>2</td>
<td>1325(±2)</td>
<td>2</td>
<td>0,083</td>
<td>2</td>
<td>1,3*10⁻³</td>
<td>2</td>
<td>-14,9</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>3</td>
<td>STM-16</td>
<td>3</td>
<td>1310</td>
<td>3</td>
<td>1,2</td>
<td>3</td>
<td>1301(±2)</td>
<td>3</td>
<td>0,085</td>
<td>3</td>
<td>1,5*10⁻³</td>
<td>3</td>
<td>-15,6</td>
<td>3</td>
<td>0,1</td>
</tr>
<tr>
<td>4</td>
<td>STM-64</td>
<td>4</td>
<td>1550</td>
<td>4</td>
<td>1,6</td>
<td>4</td>
<td>1324(±2)</td>
<td>4</td>
<td>0,087</td>
<td>4</td>
<td>1,7*10⁻³</td>
<td>4</td>
<td>-16,3</td>
<td>4</td>
<td>0,08</td>
</tr>
<tr>
<td>5</td>
<td>STM-1</td>
<td>5</td>
<td>1310</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>1302(±2)</td>
<td>5</td>
<td>0,09</td>
<td>5</td>
<td>1,9*10⁻³</td>
<td>5</td>
<td>-17</td>
<td>5</td>
<td>0,2</td>
</tr>
<tr>
<td>6</td>
<td>STM-4</td>
<td>6</td>
<td>1550</td>
<td>6</td>
<td>2,4</td>
<td>6</td>
<td>1323(±2)</td>
<td>6</td>
<td>0,093</td>
<td>6</td>
<td>1,9*10⁻³</td>
<td>6</td>
<td>-17,7</td>
<td>6</td>
<td>0,02</td>
</tr>
<tr>
<td>7</td>
<td>STM-16</td>
<td>7</td>
<td>1310</td>
<td>7</td>
<td>2,8</td>
<td>7</td>
<td>1303(±2)</td>
<td>7</td>
<td>0,093</td>
<td>7</td>
<td>1,7*10⁻³</td>
<td>7</td>
<td>-18,4</td>
<td>7</td>
<td>0,08</td>
</tr>
<tr>
<td>8</td>
<td>STM-64</td>
<td>8</td>
<td>1550</td>
<td>8</td>
<td>3,2</td>
<td>8</td>
<td>1322(±2)</td>
<td>8</td>
<td>0,09</td>
<td>8</td>
<td>1,5*10⁻³</td>
<td>8</td>
<td>-19,1</td>
<td>8</td>
<td>0,1</td>
</tr>
<tr>
<td>9</td>
<td>STM-1</td>
<td>9</td>
<td>1310</td>
<td>9</td>
<td>3,6</td>
<td>9</td>
<td>1304(±2)</td>
<td>9</td>
<td>0,087</td>
<td>9</td>
<td>1,3*10⁻³</td>
<td>9</td>
<td>-19,8</td>
<td>9</td>
<td>0,02</td>
</tr>
<tr>
<td>10</td>
<td>STM-4</td>
<td>10</td>
<td>1550</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>1321(±2)</td>
<td>10</td>
<td>0,085</td>
<td>10</td>
<td>1,1*10⁻³</td>
<td>10</td>
<td>-20,5</td>
<td>10</td>
<td>0,2</td>
</tr>
<tr>
<td>11</td>
<td>STM-16</td>
<td>11</td>
<td>1310</td>
<td>11</td>
<td>4,4</td>
<td>11</td>
<td>1305(±2)</td>
<td>11</td>
<td>0,083</td>
<td>11</td>
<td>1,1*10⁻³</td>
<td>11</td>
<td>-21,2</td>
<td>11</td>
<td>0,1</td>
</tr>
<tr>
<td>12</td>
<td>STM-64</td>
<td>12</td>
<td>1550</td>
<td>12</td>
<td>4,8</td>
<td>12</td>
<td>1320(±2)</td>
<td>12</td>
<td>0,08</td>
<td>12</td>
<td>1,3*10⁻³</td>
<td>12</td>
<td>-21,9</td>
<td>12</td>
<td>0,08</td>
</tr>
<tr>
<td>13</td>
<td>STM-1</td>
<td>13</td>
<td>1310</td>
<td>13</td>
<td>5,2</td>
<td>13</td>
<td>1306(±2)</td>
<td>13</td>
<td>0,08</td>
<td>13</td>
<td>1,5*10⁻³</td>
<td>13</td>
<td>-22,6</td>
<td>13</td>
<td>0,2</td>
</tr>
<tr>
<td>14</td>
<td>STM-4</td>
<td>14</td>
<td>1550</td>
<td>14</td>
<td>5,6</td>
<td>14</td>
<td>1319(±2)</td>
<td>14</td>
<td>0,083</td>
<td>14</td>
<td>1,7*10⁻³</td>
<td>14</td>
<td>-23,3</td>
<td>14</td>
<td>0,02</td>
</tr>
<tr>
<td>15</td>
<td>STM-16</td>
<td>15</td>
<td>1310</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>1307(±2)</td>
<td>15</td>
<td>0,085</td>
<td>15</td>
<td>1,9*10⁻³</td>
<td>15</td>
<td>-24</td>
<td>15</td>
<td>0,08</td>
</tr>
<tr>
<td>16</td>
<td>STM-64</td>
<td>16</td>
<td>1550</td>
<td>16</td>
<td>6,4</td>
<td>16</td>
<td>1318(±2)</td>
<td>16</td>
<td>0,087</td>
<td>16</td>
<td>1,9*10⁻³</td>
<td>16</td>
<td>-24,7</td>
<td>16</td>
<td>0,1</td>
</tr>
<tr>
<td>17</td>
<td>STM-1</td>
<td>17</td>
<td>1310</td>
<td>17</td>
<td>6,8</td>
<td>17</td>
<td>1308(±2)</td>
<td>17</td>
<td>0,09</td>
<td>17</td>
<td>1,7*10⁻³</td>
<td>17</td>
<td>-25,4</td>
<td>17</td>
<td>0,02</td>
</tr>
<tr>
<td>18</td>
<td>STM-4</td>
<td>18</td>
<td>1550</td>
<td>18</td>
<td>7,2</td>
<td>18</td>
<td>1317(±2)</td>
<td>18</td>
<td>0,093</td>
<td>18</td>
<td>1,5*10⁻³</td>
<td>18</td>
<td>-26,1</td>
<td>18</td>
<td>0,2</td>
</tr>
<tr>
<td>19</td>
<td>STM-16</td>
<td>19</td>
<td>1310</td>
<td>19</td>
<td>7,6</td>
<td>19</td>
<td>1309(±2)</td>
<td>19</td>
<td>0,093</td>
<td>19</td>
<td>1,3*10⁻³</td>
<td>19</td>
<td>-26,8</td>
<td>19</td>
<td>0,1</td>
</tr>
<tr>
<td>20</td>
<td>STM-64</td>
<td>20</td>
<td>1550</td>
<td>20</td>
<td>8</td>
<td>20</td>
<td>1316(±2)</td>
<td>20</td>
<td>0,09</td>
<td>20</td>
<td>1,1*10⁻³</td>
<td>20</td>
<td>-27,5</td>
<td>20</td>
<td>0,08</td>
</tr>
<tr>
<td>21</td>
<td>STM-1</td>
<td>21</td>
<td>1310</td>
<td>21</td>
<td>8,4</td>
<td>21</td>
<td>1310(±2)</td>
<td>21</td>
<td>0,087</td>
<td>21</td>
<td>1,1*10⁻³</td>
<td>21</td>
<td>-28,2</td>
<td>21</td>
<td>0,2</td>
</tr>
<tr>
<td>22</td>
<td>STM-4</td>
<td>22</td>
<td>1550</td>
<td>22</td>
<td>8,8</td>
<td>22</td>
<td>1315(±2)</td>
<td>22</td>
<td>0,085</td>
<td>22</td>
<td>1,3*10⁻³</td>
<td>22</td>
<td>-28,9</td>
<td>22</td>
<td>0,02</td>
</tr>
<tr>
<td>23</td>
<td>STM-16</td>
<td>23</td>
<td>1310</td>
<td>23</td>
<td>9,2</td>
<td>23</td>
<td>1311(±2)</td>
<td>23</td>
<td>0,083</td>
<td>23</td>
<td>1,5*10⁻³</td>
<td>23</td>
<td>-29,6</td>
<td>23</td>
<td>0,08</td>
</tr>
<tr>
<td>24</td>
<td>STM-64</td>
<td>24</td>
<td>1550</td>
<td>24</td>
<td>9,6</td>
<td>24</td>
<td>1314(±2)</td>
<td>24</td>
<td>0,08</td>
<td>24</td>
<td>1,7*10⁻³</td>
<td>24</td>
<td>-30,3</td>
<td>24</td>
<td>0,1</td>
</tr>
<tr>
<td>25</td>
<td>STM-1</td>
<td>25</td>
<td>1310</td>
<td>25</td>
<td>10</td>
<td>25</td>
<td>1312(±2)</td>
<td>25</td>
<td>0,09</td>
<td>25</td>
<td>1,9*10⁻³</td>
<td>25</td>
<td>-31</td>
<td>25</td>
<td>0,02</td>
</tr>
</tbody>
</table>
СОДЕРЖАНИЕ

ЦЕЛЬ РАСЧЕТА .. 3
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ .. 3
2. ПРИМЕР РАСЧЕТА ГЛАЗ-ДИАГРАММЫ И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПЕРЕДАЧИ ПО ЦИФРОВОМУ КАНАЛУ ... 14
Приложение 1 .. 18
Учебно-методическое издание

Казанский Николай Александрович
Волкова Евгения Самуэлевна
Бартасевич Виталий Валентинович

РАСЧЁТ ХАРАКТЕРИСТИК КАЧЕСТВА ПЕРЕДАЧИ
В ЦИФРОВЫХ СЕТЯХ СВЯЗИ

Методические указания для курсового и дипломного проектирования

Подписано в печать
Усл. печ. л. 1,5
Заказ

Формат 60х84/16
Тираж 100 экз.
Изд. № 95-12

150048, г. Ярославль. Московский пр-т. д.151
Типография Ярославского филиала МИИТ